Heat shock protein 25-enriched plasma transfusion preconditions the heart against doxorubicin-induced dilated cardiomyopathy in mice.
نویسندگان
چکیده
Extracellular heat shock proteins (eHsps) in the circulation have recently been found to activate both apoptotic and protective signaling in the heart. However, the role of eHsps in doxorubicin (Dox)-induced heart failure has not yet been studied. The objective of the present study was to determine how Dox affects circulating eHsp25 in blood plasma and how eHsp25 affects Dox-induced dilated cardiomyopathy. Wild-type mice [HSF-1(+/+)] were pretreated with 100 μl of heterozygous heat shock factor-1 [HSF-1(+/-)] mouse plasma (which contained 4-fold higher eHsp25 compared with wild-type mice), HSF-1(+/+) plasma, or saline, before treatment with Dox (6 mg/kg). After 4 weeks of this treatment protocol, HSF-1(+/-) plasma-pretreated mice showed increased eHsp25 in plasma and improved cardiac function (percentage of fractional shortening 37.3 ± 2.1 versus 26.4 ± 4.0) and better life span (31 ± 2 versus 22 ± 3 days) compared with the HSF-1(+/+) plasma or saline-pretreated mice. Preincubation of isolated adult cardiomyocytes with HSF-1(+/-) plasma or recombinant human Hsp27 (rhHsp27) significantly reduced Dox-induced activation of nuclear factor-κB and cytokine release and delayed cardiomyocyte death. Moreover, when cardiomyocytes were incubated with fluorescence-tagged rhHsp27, a saturation in binding was observed, suggesting that eHsp25 can bind to surface receptors. Competitive assays with a Toll-like receptor 2 (TLR2) antibody reduced the rhHSP27 binding, indicating that Hsp25 interacts with TLR2. In conclusion, transfusion of Hsp25-enriched blood plasma protected the heart from Dox-induced cardiotoxicity. Hsp25 antagonized Dox binding to the TLR2 receptor on cardiomyocytes.
منابع مشابه
Mitochondrial DNA mutations activate programmed cell survival in the mouse heart.
Increased frequencies of mitochondrial DNA (mtDNA) mutations characterize the aging heart and are also found in idiopathic dilated cardiomyopathy and end-stage heart failure. The pathogenic potential of such mutations is unclear. Transgenic mice showing accelerated accumulation of mtDNA mutations and dilated cardiomyopathy due to expression of an error-prone mtDNA polymerase specifically in the...
متن کاملRole of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice.
Treating cancer patients with chemotherapeutics, such as doxorubicin (Dox), cause dilated cardiomyopathy and congestive heart failure because of oxidative stress. On the other hand, heat shock factor-1 (HSF-1), a transcription factor for heat shock proteins (Hsps), is also known to be activated in response to oxidative stress. However, the possible role of HSF-1 activation and the resultant Hsp...
متن کاملDoxorubicin-induced cardiotoxicity: direct correlation of cardiac fibroblast and H9c2 cell survival and aconitase activity with heat shock protein 27.
The use of doxorubicin (Dox) and its derivatives as chemotherapeutic drugs to treat patients with cancer causes dilated cardiomyopathy and congestive heart failure due to Dox-induced cardiotoxicity. In this work, using heat shock factor-1 wild-type (HSF-1(+/+)) and HSF-1 knockout (HSF-1(-/-)) mouse fibroblasts and embryonic rat heart-derived cardiac H9c2 cells, we show that the magnitude of pro...
متن کاملOver-expression of heat shock protein 27 attenuates doxorubicin-induced cardiac dysfunction in mice.
BACKGROUND Oxidative stress and myocyte apoptosis are thought to play an important role in the pathogenesis, progression and prognosis of heart failure (HF). Heat shock protein 27 (Hsp27) has been found to confer resistance to oxidative stress in cultured cells; however, the role of Hsp27 in in-vivo hearts remains to be determined. AIM To investigate the effects of Hsp27 over-expression on do...
متن کاملLoss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy.
Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 341 3 شماره
صفحات -
تاریخ انتشار 2012